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ABSTRACT

Thg potential distribution in the neighborhood
of a photo-emitting plate immersed in a plasma is calcu-
lated. We find that two steady state potential distributions
can exist, namely one in which the potential decreases from
its plate value to zero monotonically and one in which it
decreases from its plate value to a (negative) minimum and
then increases slowly to zero. This latter "over shoot' po-
tential appears to be the stable one. Such over shoot effects
are expected to play an important role for sheats around

satellites in the interplanetary plasma.



INTRODUCTION

When a satellite is illuminated by the ultra-violet radiation
of the sun, photo-electrons are emitted. In the interplanetary medium,
this photo—electric effect dominates ;he accretion of thermal electrons,
so that a positive surface potential is establishedl’z. This positive po~
tential attracts electrons and forms a steady state electron sheath.

In the present work we consider the potential in the neighbor-
hood of the satellite. Two possibilities can arise. The electrostatic
potential might decrease monotonically to zero, or it might over-shoot3
(Fig.l.). The present work is an investigation of the conditions under
which the potential distribution may take the form of Fig.l, and the
stability of this solution relative to the monotonic solution.

The problem is approached using one dimensional model subject
to the following restrictions:

(L The satellite surface is idealized to a large (compared to
the sheath dimension) metal plate which emits photo-electrons, which
have a velocity distribution fv(vo’ 0) at the plate.

(2) The cold plasma-ions are drifting toward the plate with a
velocity Ui » which is much smaller than the thermal velocity of the
plasma-electrons. But due to the large ion-mass, the kinetic energy of
an ion is much greater than any potential inside the sheath, so no ions
are reflected.

(3) The temperature of the plasma-electrons is finite. The velo—
city distribution of the incoming plasma-electrons at the sheath edge

is fe(vw, ©)
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(4) The steady state is defined by the absence of any net
current.
(5) An over—shoot electrostatic potential is assumed (Fig.1l},

but the surface potential, ¢o , and the minimum potential, ¢m s

are left to be determined.

I1. PARTICLE DYNAMICS

(a) Photo—electron Dynamics

In the system we are considering, it is well known that the
total energy of every photo-electron is constant (the constant may
differ from one electron to the other). The energy equation for a typical

photo—electron is
TV - ed(x) =3 v - e (1)
where
¢o is the potential at x = 0 (the surface potential),
v, is the speed of the photo-electron at x = 0 ,

¢(x) 1is the potential at =x and

v 1is the speed of the photo-electron at position x .
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According to the energy relation, eq. (1), the photo-electrons at

x =0 consist of two sets: 1.) those with velocity range

SV B (o) v VR (- b) @

are trapped in the region between 0 < x < x 2.) those with

velocity range

/ Er-@o - d)m> Vo 5% g

can escape. But from eq. (1), eqs (2) and (3) are equivalent to

(2-1)

and — <¢ - ¢m) <V < ®

(3-1)

hence the number density of photo-electrons at position x 1is

/2206 - 49 o

Nv(x) = S(xm - x) dv fv(v,x) + dv fv(v,x) (4)

- V20 - ) /20 - 4
m m m m
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where S(a) is a step function, and fv(v,x) 1s the velocity
distribution at x . Through the energy relationm, fv(v,x) is

related to its boundary distribution, fv(Vo,O) s by

/[ 2e
Er%¢o-¢m)
fv(v,x) = S(xm - x) dvo fv(vo,O) 6[%0 - -VQZ +‘%g(¢o - ¢) }

2e
o (6 %)
5)
2 | 2e
+ S(v) dvo fv(vo,O) 6{}0 - -VQ + af(¢o - ¢) ]
2e
-
where &(b) is the usual Delta-function.
Substituting eq. (5) into eq. (4), changing the order of
integration and using the properties of S-function, we find
2804
/220 -0 ) .
Nv(x) =2 S(xm x) dv fv(vO,O) // o +
A C L)
2e
m (¢0'¢) (6)
Vo
+ dvo fv(vo,O)




(b) Plasma-electron Dynamics

The energy equétion for a typical plasma-electron is

2

v =
®©

v - ep(x) )

N2
Nl

where v_  1is the speed of the plasma-electron at « , where the

potential is assumed to be zero. Through analysis, similar to that

used for the photo—electrons dynamics, the distribution function

and the number density of the plasma-electrons at position x(x < =)

are
- J_ 2
oy ¢
f(v,x) S(x-x) dv_ fe(v ,oo) g[vw+ VZ_Z-_e_d, ]
2e
-V - =1
m m (8)
-/_ 2
m ’n 2 2e
+ S(-v) dv fe(vw,w) 8 yw + Yvo - o $
and
2e

T m ¢m

Ne(x) = ZS(x - xm) dv v fe( Vi) +
v vi + ZE ¢
_2e "
m $°))
+ dv V. fe(—V >
v vi + ﬁg—¢
Cze



(¢) Plasma-ion Dynamics

‘In general, the energy equation for an ion is

M M, .
—i-vz = = v2 + ed(x) (10)
2 e 2
The cold ion assumption implies
Py
N () = (11
1 - 2e§(§)
MiUi
where n, is the number density of plasma-ions at « . Since the

kinetic energy of an ion is much greater than the sheath potential
[see assumption (2) abovel, the density of the ions may be taken as

constant for all x approximately,

III. POISSON'S EQUATION

By collecting the appropriate terms obtained in the last

section, the Poisson's equation can be written as

Pl{¢(x)] X € X
2

490G : 2L = - 4np(x) = 4me (12)
X

P2[¢(X)] X 2z X

where



v, £,(v ,0) v (=v, )
Pl(¢) Bl n, + dvo - + dvoo ———————
2 2e 2 2e
V/Vo - (6 -9) + ==
/28 - _ 2
==(¢ -0 ) =

/ 2e (13)
O ¢)

+ 2 dvo Y
2 2e
A Il ))
2e
af(¢o-¢)
and
= _ v £ (v_,0) o o
P2(¢) Z-mn, + dvo 0o V' o + av_ mee( V_s®) .
2 2e [T TR
2e Jzo m (¢°-¢) 2e Vi + %2'¢
m 8o “a n
(14)
N
m m voofe ("Vwam)
+ 2 dv s
2 2e
v o+ - ¢
2e
-_— - ¢

The first and the second integrals in Pl(¢) and P2(¢) are due
to free photo—electrons and free plasma-electrons; while the last
integral in Pl(¢) is due to "trapped" photo-electrons and the

last one in P2(¢) is due to reflected plasma-electrons.
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Now, we shall cast the Poisson's equation into the form of
the equation of motion for a fictitious '"particle" moving in a poten-
tial "well". This is done by differentiating by parts, and by applying

the Leibniz' formula for differentiation.

5 =
'é'd? Vl(d)) X £ xm
.d;g = (15)

3 =
- EJ;VZ((P) XZXm

where

V,(4) =

1
+
[\
=3
=}
=]
=
]
©-
B
N

(16)
m m
/ 2e
o (b 0)
‘£ (-v',m)] -4 | v v Por? 2209 ~9) £,(v",0)
2e(9-9)

and



<
N
~
-
s
|
+
N
=
=
[}
BN
(1]
B
I
o
S

Here we have choosen the arbitrary constants implicit in

defining 'Vi . Vé from (15) by requiring that

TG = Tu)=0

and have changed the variable of integration. The integration of eq.

(15) from x to x, yields

b -
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Eq. (18) can be reduced to quadrature

o
—de' Z(x-x) x<x (19)
v - V. (¢) " "

o 1

¢ L
____49__._=,/§(x_x) X 3 X (19-1)
/=Y, (¢) " "

o 2

Note that Vi(¢) . ‘Vé(¢) are both negative, this is due to the fact
that ¢ is bounded in our problem so that the fictitious "particle"
must move in a potential "well".

Now we examine the conditions which are imposed by our assumptions.

(1) Neutrality condition at « [from eq. (14)]
2e
= "2 ’n
n, = dv'[f ( v'2 + Ze ) 0) + f (-v',»)|+ 2 dv' £ (v',») (20)
i v m ‘o’ e ’ e ’ .
0

2e

n ’m
(2) No electric field at = [from eqs. (18), (17), and (20)]

o (v - Voo 20 ) [ (o v B h0) ¢ g o)

_2e, @D
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For ¢m =0 , both terms vanish independently. However, for some
distributions fv . fe » we will see that there exists a ¢m <0

such that eq. (21) holds (i.e. over-shoot is possible).

(3) To fulfill the requirement that the potential is a minimum at X
9 .

it is necessary to have a deficiency of ions at X (i.e. Q_% >0 ) .
dx" | x

From eqgs. (12), (13) [or (14)], and (20), this condition m

can be written as

(22)

m
+ fe(-v',W{]> 2] dv' fe(-v',w)

o]

If the photo-electrons are completely "trapped", and the plasma-electrons
have a Maxwellian distribution at <« one can easily show, via (22),

that the over—-shoot is impossible.*

(4) Initially, the photo-electrons~flux is much greater than the

plasma-electrons—£flux which in turn is much greater than the plasma-ions—

flux, i.e.

* for this case eq. (22) becomes

eB¢
1+ erf G - e8¢ﬁ)< e O , Wwhich cannot be satisfied for ¢m <0 .
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= 0
dvovo-fv(vo,O) >> dv&vm fe(vw,w) >> |~ niUi . (23)
o) -0
(5) For steady state, we insist on zero total current.

Since the "trapped" photo-electrons and the reflected
plasma-electrons contribute no net current, this condition can be

written as

- -/- 0

dvovofv(vo’o) + | dv v fe(vw,W) + niUi =0 (24)

OO

2e
m (460

where we have used the fact that the steady state current of every
species is independent of position.

Equations (22) and (23) are conditions imposed on the distri-
bution functions. Given a set of distribution functions which satisfy
these conditions; then the surface potential, ¢o , and the over-shoot

potential minimum, ¢m , can be determined via eqs. (20), (21), and (24).
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IV. NON-MONOTONIC SOLUTION

In order to explore the possibility of steady-state poten-
tial distributions taking the form of Fig. 1, we now consider the
sﬁecial case* in which the distribution of emitted photo-electrons at
x = 0 has the one-dimension Fermi shape (Fig.2), and the distribution

of incoming plasma electrons at « is Maxwellian, namely

vavo
fv(vo,O) = P S(uo - Vo) , (Fig.2.) (25)
110 ‘
- - Bmv2
©) = / mB, >
£, (v, ) n v 5= exp( 5 ) (26)

where the characteristic velocity of the photo-electrons, U is aSSumed+
to be greater than V-%S (¢ow¢m), and S(a) dis the usual step-function.

With these distributions, eqs. (23), (24), and (21) reduce to

n,u, n
%<nlul) « = ( - > < 1 (27)
v o V81 n QﬁuZ
v )
3 n, u, n_ exp(-z)
2
%-l - (1- 82) / + nlul - 4 = == s (28)
AV Ao ] V2 n, VmBuo
* The results are expected to be qualitatively valid for any 'one-

parameter' shapes for fv(vo,O),fe(vm,m) , 1.e. those characterized by

1
single macroscopic velocities (in this case ug and (Bm) %

).

+ There can be no steady state for the opposite assumption.
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and

n

e —
G(e,8) + S8e F(z) = 0 s

where

2
n_mu 3 3
G(e,s) = ——2 Z[Kez + 5) 12 _ 202 83]

be

+ (1—82-5)(b/ez+5~l/1-€2/(—3—)—(1—82)8

1+ 248 >_+ (1 - e2)? %n< 1+e )
Vl—€2+/§ \/l-ez

- (1—82-6)2 Zn(

/2
—26[‘/52+ —/g¢1—€2+(1—82—6)2u——§-——t—§-

2

1-e¢"+86

F(z) = (1 - 2) [1 + erf(fz—)] - (l + 2/%:)exp(—z)

with

m
i

]/ 2¢(¢ - ¢ )
s} m
1_____2__._.__

mu
0

- 2e<1>m

z = - eB¢m

(29)

o

(31)

(32)

(33)

(34)
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In view of the condition eq. (27), eq. (28) cannot be satis-
fied unless € is small, which also implies &§ < 1 . Thus one may expand

’ *
the terms in G , to obtain

2
n mu 3 3 .
G(e,6)22-42;49{}%[ﬁez + 8) 2 _ 83] +-% $ 2 _ SJSZ 4+ 8§+ 0((82 + 6)2>}

6<<]_, e << 1 . (35)

Based on the assumption that u, << (mB)_1 << u_, one may
neglect the term proportional to uy in eq. (28). Then eq. (28) reduces

to

2 1 Ye
e“ & exp(-z) . (36)
/2m 2
n vmfu
v o
and eq. (29) reduces to
2f 2, o223 o fi s 2 NCEERID
3[(6 + §) —e]—68+€ =-3 -3 37
vaBmuo

It is clear that 8 is related to 2z through eqs. (33) and
(34). Therefore eqs. (36) and (37) are two algebraic equations for e and
z (i.e. for ¢o s ¢m) . To simplify this set of equations, we use the

relation between 8§ and 2z , and define

* By expanding eq. (30) also for § >> 82 , one readily shows that

eq. (35) gives the correct leading terms for all & with an error no worse

23
than ¢ times leading term.
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e = 222 v (38)
and
Te f 2
A= Bmu0 (39)
Then eqs. (36) and (37) reduce to

V8r z exp (-z) y2 (40)

>
]

and

G A1
(22)

Although A 1is a known parameter (in principle) and y , =z
are to be determined, it is convenient to temporarily eliminate X from

eqs. (40) and (41) to obtain

il -1 ey 242 3 5 w)
where
g(z) = - @ exp(z) F(z) (43)

For y << 1 eq. (42) implies g(z) > 1 . Then using egs. (43)

and (31), one finds =z 2 2 ax 2 0.4915. Furthermore eq. (30) implies

A(Zmax) + 0 . One easily shows, from eqs. (40), (41), that A 1is a
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monotonic decreasing function of z , or, what amounts to the same

thing, 2z 1is a monotonic-decreasing of X , 1i.e.,

d\
dz <0
for z < z
max
dz
<0
A <A = 2/27
max
Z(Amax) +0 °

For general y , we square eq. (42) to find

3 5 3 2 2
—iyg+(z-y2g) -y +2a- =0 (44)
(or for y#0, g#0)
3 2 2 l-g
y+%gy ——3—8-y+(g)=0 . (45)

This is a cubic equation, so the standard technique applies. One finds,
for all positive+g , there are three real roots. However, there is
only one genuine positive solution of eq. (45), i.e., there is one nega-

tive root, and one spurious root. To eliminate the spurious root, we

¥ From eqs. (31) and (43), it can be shown that g > 0 in our

problem.
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note that we must have y << 1 as g - 1 corresponding to our earlier
. lim /—
solution. Also, one must have 20 z y(z) = 1 . It turns out that the

genuine root may be written as

u 21/u3 + 6 + 4 ‘
=% 3 °°S( 3 )'l (40)
/2
u
where
-1 3V3 (—u2 + 2u - %)/zuz + 13u + 32
¢ = tan 47
/E(u4 ~ 45u + §i>
m ui
- ysbsy (48)

with u = %~g(z) . The substitution of this result into eq. (40), yields
A as a funétion of z = - e3¢m . The numerical calculation, which
gives the relation between A and 2z , 1is shown in Fig.3. Fig. 3
shows the limits A(z = 0) = 2V21 and z(A + 0) = .4915, as expected.

For X > 2v¥27n , it appears that there is no solution. For fixed A

having obtained ¢m( = - z/Be) from Fig. 3, one determines ¢0 from
2
mu A exp(6e¢m)
e ¢ =5 - -e ¢ (49)
2/2m 8

V. MONOTONIC SOLUTION

It should be noted that if ¢m is identically zero, i.e.,
¢ declines monotonically to zero, eq. (21) is an identity, so that

there is one less variable and one less non-trivial condition (on ¢o).
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Assuming that fe(voo,w) s f\)(vo,O) have the special forms given by

eqs. (25) and (26), and ¢m =0, one finds for Poisson's equation

2
4d o 4me 2(0) ,
dx
where
e
P(9) = an(e,y) Z—Y(W)
with

2
X(e,y) = B2ty -+ - A+ Q-c”-7) m 1+ /Ry

- (1—82) 2n<——];-i—€—->+2(1—82—y)
2
1 -

Y() = 1 - exp(w) [1 - erf(/{ﬂ—)]

2ed
e = 1~ 20
mu

o)
- 2ed
Y = e2
mu
o

and

w = eB¢

(50)
; (51)
Vl—€2.+/y_
: 2

,Q,n/l-s +/y_ . (52)

/1—(52+Y)
> (53)
(54)
(55)

(56)



Furthermore, for this case the current equation [eq. (30)] becomes

n
E2 - 1 e (57)

van anmBui

For v and € both small, one has approximately

X(e,y) = Xl[l + 0(82 + y)]
X,(e5v) = 2[/~7+ et + Y - e} y << 1 . (58)

On the other hand, if vy >> 52

X(e,v) = X,[1+ 0())

X,(e,¥) = 24 + (1 - 7) In (1—““—5) .y ek (59)
1=K

which matches up with the: preceding expression for small vy .

We will now show that the precise condition on A to have
2

(%%) %2 0 for all x , in this case is also

>
A

2/21 .

where A is defined by eq. (39).
do \2
To show this, we consider (&Q) as a function of /3 . We

have that
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2 2

-i%%)=m@%(?)=mm@u@ , (60)

d}/&- X X
where eq. (50) was used.

d 2
We know that (ﬁ) =0 =0 . Since P(¢ =0) =0, the first
2
two derivatives of (g%) with respect to /q? will also be zero at
2

/q? = 0 (note: we are considering (%\) as a function of /d? rather

than ¢ to avoid singularities in the derivatives). We will show the

following:
(A) For A > 2V/21 the first non-vanishing derivative is
£ 3 (giqz <0
d(V/$) *! | Vg=0
do 2
so that for /@- small but finite (E}—{) must go negative. Thus this
case is ruled out.
(B) For X = 2/21
d3 b 2 o d4 dg 2 .
3 (E{— - ’ ‘/—4 dx z

d(v9) /=0 d(ve) /=0

d 2
so that (ﬁ) starts upward from /5 = (0 ; further we will show

2
that P(¢) 2 0 for O < ¢ < ¢o s so that (%i') is a monotone increasing
function of V¢ , and is thus always = 0 .,
2

©) For A < 2V/21 we show that P(¢) > 0 so again (%}%) 2 0.

We note that the two expressions for X given by eqs. (58)

and (59) are overlapping, therefore we may assume that eq. (58) is valid
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for vy <e , and eq. (59) is valid for y > ¢ .
We desire to express everything in terms of a single wvariable.

We employ-eq. (57) in the expressions for X ; then wr.te

Yy = 2w2 . [via egs. (55) and (56)]
fmu
o)
and introduce
uo= A (61)
When the dust has cleared, we find an expression of the form
2 32m
- (—g;i) =T ~ ‘/_%- U{D(u) - —A—-Y(uz)] = const. P(u) , (62)
ave 4v2
where
u -+ ‘42 + -—A-—' - / A s B < 1/
221 2/21 2v2m
D(u) & (63)
2 -— g
n + (a 2a ) 2n (a f u) s V &r <u < Jﬁz -2
o-H 2/21 2/21
with
Bmui
o = 5 (64)

Where necessary, we use the fact that
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For small u , we expand D(u) , Y(uz) to obtain

P(u) = u[u (1 - zzﬂ') + uz(—/g‘z+ 272_) + 0(u3):] (65)

Thus for A > 2/27 » P(u) 1is zero and decreasing in the neighborhood

_ ot 40
of w=0 . This implies that (dx) goes negative for u small but
finite, so we must rule out this case. For X < 2/55-, P 1is increasing
in the neighborhood of the origin, so (%%)2 is positive there.

We now ask whether P(n) 1is ever negative for A < 2V27 . As
shown in Appendix I it is not. Therefore (%)2 is a monotone increasing

function of V¢ , and is always positive for 0 < ¢ < ¢0 (i1.e., for all

0 gx g =),

V. ENERGY CONSIDERATIONS

We have seen that for A = neVBmui/nv < 2/21 , there are two
solutions of the steady state Vlasov-Poisson system. Such a result is not
especially unusual for a non-linear system. However, one would expect
physically that the system under consideration should have a unique steady
state potential. Thus it seems likely that one of our solutions is not a
true steady state. While this question cannot be settled conclusively

without solving the full time-dependent non~linear Vlasov-Poisson system,
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the following argument suggests that the non-monotonic solution is

the stable one.

Consider the total potential energy, defined by

2 .
U = dx %; (—g—%\) -0 ¢®| -0 ¢ (66)

where p(x) is the space charge density and o the surface charge

density on the plate. If we regard

p(x) , o0 as given and vary ¢(x) ,

we find that (66) is a minimum for any ¢ which is related to

PO
by Poisson's equation and the corresponding surface relation
a¢ =
Tx = - 4m0 (67)
x>0+

which follows from Poisson's equation and the fact that the field inside

the metal is zero., It seems reasonable to suppose that if Poisson's equa-

tion has two or more solutions, the system will tend to seek the state with the
lowest potential energy. In the calculation which follows, we will show that
the non-monotonic solution has less potential energy than the monotonic one.

Using Poisson's equation, partial integration and Eq. (67) in

(66), one finds the simplified expression

ve-L | ({}3) (68)
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Using now Eq. (18) and an obvious change of integration variables, one

may write (68) as

5, 0
p = —1 a6 V- (6) + | 6 V-V, (9 (69)
b2
¢m ¢m

Using the special distribution functions, given by eqs. (25) and (26),

in eqs. (16), and (17), with the help of eq. (20) one finds

n
N, = - 2miln fu(r,0,0 - —2 k@2 } (70)
n_ (pmu_) '
v o
and
2 e 2o )
Vi ($)= ~4rmu n %|H(y,8,e) - ——— - K(w,2z) | +|J(y,e) - 5 L(W,Z)] .
nv(Bmuo) nVBmuo _f
@28
where
N
w = Be(¢ - ¢m) s
y = v
Bmu2
o]
2= - Be o N (72)
- 2z
§ =
Smu2
(o]
2e(d = ¢_)
- _ o 'm
R

m
uO
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K] ,  (73)

™

-

K(w,z) = w[l+erf(/;)] —exp (w—2z) [l + erf(/v_v_)]+ exp(—z)[l + 2

2 5 7
(E:z + Y)3/2 - Y3/2 1-62 + —g'ii-ﬂ (624"‘{ - 1—82 /‘?> -

H('Y,(S,E) =
(l—ez—yz) on 1+V82+y _ E3 _ e(l—ez) + (l—ez)2 o 1+¢
2 2 2
Vl—€2+J? \/l--e2
2
- v ¢e2+ - Vl—ez/§'+ (l—ez—y) n e 1o R (74)
. Vl—-ez+/§
L(w,z) = exp (—z)[exp(w)erf‘ (V) - 2/%] , (75)
and
9
J(y,e) = y3/2 l—€2 + Sl:g—ZXl-/V Jl—az -

o 2
_ 1/2(1_62_”2 on 1-¢™ + f—x (76)
/1—52—7

Since Eq. (70) is for the region x > X s hence we have w <z , vy £ 8§
On the other hand, Eq. (71) is valid for the region x < X where Y can
range all the way up to (1 - €2) . Furthermore, we note from Eq. (76)
J(y,e) 1is independent of ¢ .

Substituting eqs. (70) and (71) into Eq. (69), and introducing

Y as a new integration variable, one finds
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2 2 2
mu0 muonv ne BmuO
U= - —S-é‘ T dy H(Y,5,€) - 2 K 2 Y2
n Bmu
o Vv o}
1—82 [ 9 (Bmui )
n Bmu K\—= v,z
V2 | dy By,e) + H(Yéé’e) - —= \f( 5= Y,z) + ————25—
anmuo

77

The same form is wvalid for the monotonic case provided both

§, and =z are replaced by zero and the ¢ 1is modified accordingly

(recall that e & on e—z//;v 2w8mu§ ) . If we denote the potential

energy of the non-monotonic and monotonic solutions as U

NM and U

M

respectively; then as shown in Appendix II, we have
U - U, £ 0 (78)

provided A 2v2w , where the equality occurs only for X = 2V27

A

(i.e. z = 0).

Thus it is suggested that the ultimate steady state potential
will have the form of Fig.l, whereas the monotonic solution may be only
metastable (i.e. capable of existing virtually unchanged for relatively

long periods of time, but ultimately decaying to the "true" steady state).
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APPENDIX T

The proof of P(u) > 0 for X < 2V/27
(1) First we consider the region u < ¥A/2V21m . Then from eqs. (62)

and (63), we have

P = P =W (A-1)
where
o zu+ Al e A LAy A e
2E 2E 4T 2/

By elementary differentiation,

Q(w = (1 - )+ L A exp (uz)[l - erf (u)] . (A-3)
2/ 2m, (20 X 2v2

2V/27

It i1s obvious by inspection that
QW > 0

and the equality holds if and only if both A = 2V/27 , y= 0 . Thus

Ql(u) is monotone increasing and always greater than zero.

(2) For the second region, we have

Pu) = uw Q) , ¥ A u < VA /i__ (A-4)
2V27

2V2n
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where

) OLZ _ 2 o+ u A 9
QZ_(u) =+ -———La &n - ] Y(u™) (A-5)

WYl = TG (A-6)

where

(A-7)
Now B, can be anything from zero to one. But
T() =0 T(1) > 0 s

(note the last inequality is due to the fact that Y(ui) £ 0 for all um)

and

- 2 2
T'(um) = (Z—Jﬁum—um) + ‘/Fum(l-f'um) exp(urzn)[l—erf(um)] > 0,0 < pm <1,

(A-8)

S0 T(um) is monotone and therefore positive on (0,1) and Qz(um) >0 .

At the other limit

2
u
Qz(Vaz-ui> o~ a{l + -&% Zn(%::> - ui[% Y(uz)] } . (A-9)
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But = Y(u2\ < Z_ S0
/T
.QZ( az - ui) >0 for ué Sp— <1 (A-10)
2/27
Now we return to eq. (A-4)
- A 2 s
Q) = Dy(w) - =Y (A-11)

42

where

OL2 _ u2 o+
Dz(u) =y 20 Q'n(a — U)

From our previous result, the function Y(uz) is a monotonic function

of y with no inflection; whereas it can be shown that Dz(u) has exactly

one maximum (around u = 0.652) no minima and no inflection points. Since
2 , . 2

Dz(u) > A4V2 Y(u°) at the endpoints, this shows that Dz(u) > A4V2Z Y ()

for the whole range. Thus Q,(u) > 0 for the entire range. Therefore

P(y) > 0 for X g 2/27  Q.E.D. (A-12)
APPENDIX II
Proof: UNM - UM <0

We have, from Eq. (74)
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H(y,e,8) = (232 = y3/2/1-g2 4 Loem0) [“Ezﬂ Vi-e?/y ]
_ (1-e2-y)? jzlnl\l%/e:?--_ij _‘ _ 3 - e(l-e2)? + (1-e2)2 Zn[ l+e} _
2 2 2 ;
/1_32+/;J /1-e2
/-2
- /2+<S—/1— Yy + (1-e2-y) n Liv/eHs (74)
/1-e2+/§
We write
H(y,8,e) = M(y,e) — yN(S »€) s (B-1)
and note the following limits:
(A) v << 1
4 / 1 Yy <<1
M(y,e) = §[<e2+v>3/2- 1-e? ¥3/2-¢3| + 0((e%+1)?) (8-2)
€ << 1
with the subcases
(@) y << g?
M(y,e) = Zey|:l + O(—/—i-):l , Yy << €2 << 1 (B-3)
(b) €2 <<y << 1
M(y,e) = 2/?52[1 + 33ﬁ+ 0(5—)] €2 <<y << 1 (B-4)
‘/Y—
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'To take into account the possibility that vy may be near unity, we
consider
(B) y > e .
In this case a slightly different expansion may be used,

and one finds

M(y,e) = 2%?&2 [l + 0(?:)] s Y >> g2 (B-5)
Y

Clearly Eq. (B-2) gives the correct leading term for all vy . Turning
now to N , we have two cases.
(o) Non-monotonic: Expansions for & << 1 and 6 >> €2 match up nicely

and are well approximated by
N(S,¢e) =[2/52+ - /5‘] (B-6)

For all & between

(8) Monotonic § =0

N(0,e) = 25[1 + 0(e2)] (B-7)

From Eq. (76), we have

J(y,e) = Y3/2J1_€2_+.(1“€2‘Y) __(l—ﬁi—Y)z on Vl—ez+(f

2
C LY 1-e2-y

(76)
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It is easy to show that

I(ye) = ’/2|:y3/2 + /7 - o2 ch-l-//ij}[l + 0(e2) (3-8)
=YY

for all vy < 1-¢2 . We note that the leading term may be written as .
C(y)y3/@ where C(y) varies only sligthly (from 4/3 to 1), for the
whole range of y . The correction is, at worst, e2 time the leading
term. The leading term is the same for the monotonic case and the non-
monotonic case, except the definition of v .

Now the potential energy is given by Eq. (77)

2 ) ' 2
mu% muonv n, Bmuo
U= - 5o = dy VY H(y,8,e) - > K 5 y,z)

. anmuo
1-¢2 2 2
/7 H(y,8,€) Te Bmu, L
dy J(y,e) + > - 5 L 7 Y2 + % K 5 Y2
n\)Bm.uO )
)
a7
where K , L , are given by egs. (73) and (75), i.e.
K(w,z) = W[l+erf(/z_)] ~exp (w-2z) {1+erf(/w;)] +exp (-z) [14.2,/‘_'7“_ ] (73)
and
L(w,z) = exp(—z)[éxp(w) erf (Vw) —2/?%] (75)

with w = Bmuglz Y .
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The expression (77) is valid for both cases. For monotonic
case, both 8§ , and 2z are replaced by zero, and ¢ is modified
accordingly (recall that e2 & n, exp(-z)/n ZTrmBug) .

Now the first integral in eq. (77) is positive for =z > O
(it vanishes of course, for z = 0) . Thus, given the minus sign out-
side, this term (call it J ) tends to decrease the potential energy
for the non-monotonic case (it is zero for the monotonic case).

Turning to the second integral of eq. (69), we note from egs.
(B-8), (75), (B-1), (B-2), (B-6), (B-7), and (73) that J is much larger
than the other terms as long as vy >> e . Accordingly, we break the

second integral into two parts at some convenient peint Yo such that

g2 << Yg << 1 . One such point is
Y = 3/2 (B-9)

But the maximum value of the integral on (0,63/6) is < g3t 3 so that

E3/2

n 15/4%

dy'%]+ﬂ———e—-(L+5)sa 5 (B—10)

2 2 2
nVBmuo

o]

which can safely be ignored. Also it is not difficult to show from Eq.

(76) that
J(y,e) = Jo(Y)[? - Cl(y)ez] , where % ¢ Cl(y) <1, for all v . (B-11)

Calling the positive constant in Eq. (77) € , one thus has approxi-

mately
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1-¢2
Cle2
US- oI+ V2 dy/Jo(y)l— 5 +
83/2
M(y,e) = YN(§,€) n
1 e K -
+ (\ - - > (L )| (B-12)

o n\)mSuo

Now we make the following observations:

(1-€2) 1
f dy vJ_(v) = J dy /I (v) - € + ofe®) (B-13)

o]

(1)
e3/2

(2) Using Eq. (B~4), and the fact noted above that

J () = ¢, ¥3/2 . 1gcc < W3

1/4 dY .M_(_YLa_)_ < _§_€2 (3_14)
3/2 VI (v)

(3) From eqs. (75), (73), one readily shows that

L + M08 [0 + KOO L 8 ey Lol vy sy

where

A9
M
QO

¥(w) = exp(w) [1—erf (/V;)]-— 1- (B-16)
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(4) From eqs. (B-6), (B-7)
N(S,e) - N(0,e) = 2[¢62+6—€—-/ZS—] + 2(3-—50) (3-17)
vhere e, =clz=6=0). (B-18)

Clearly this is negative for all § > O .
From these considerations it is clear that (denoting the

potential energy of the non~monotonic and monotonic solutions as U

NM

UN respectively)

{ 1
UNM—UM=_ T+ ocscz) [1 - exp(—z)]+ 1/2(60+J§_‘/€,2+6)de . _

o VI, M
1
n Y erf(/z—)
- == —_— (B~-19)

dy
8o, VJO(Y)

0
Here J' 4is positive (it is essentially J plus positive contributions
from the term involving ¥(w) and o is positive and 0(1)

Now it is very simple to show that the curly bracket in Eq.

(B~19) is positive, provided X < 2V2m . Even for z << 1 the last

(negative) term has an order of magnitude [(A/2V/2m) fldy Y/"JO(Y) ] . Thus
o

A
NM M * o /om

A
[

where the equality occurs only for z =0 .
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